
August/September 2015

MOSAIC - Manual for the „Language
Specification“ editor

Introduction
The “Language Specification” editor can be a very powerful tool. It is used to define new

specifications of “how to generate code” for arbitrary (existing and non-existing) programming

languages. Users can do this via a graphical user interface and without changing the MOSAIC source

code. The user specifies how variables have to be interpreted, how the standard mathematical

operations look like in the desired programming language, and of which different nested code blocks

the final overall code will be composed. Additionally calls for external functions and code generation

properties can be defined. In the following part of this manual all panels of the editor will be

introduced by explaining the ideas of the available options and by showing a language specification

example for the programming language “Matlab”. In the last part of this manual the typical workflow

is covered.

The panels of the “Language Specification” editor

Global Language Settings

Screenshot

Options

General remarks:

Creating a new language specification starts with this panel, where you mainly set the type of

equation systems you want to support with your user-defined language specification. The “NLE

specific option” is for advanced users. The type “DAE” has not been extensively tested so far.

Language Settings:

 Direct Functions Supported

Check this option if you want to use direct function calls and implementations in your

language specification. If this option is unchecked, the code element blocks

“DirectFunctionsImpl” and “DirectFunctionsCall” will be ignored.

 Use Analytic Derivatives

Check this option if you want to use analytic derivatives. This is not tested and it is not

known how to actually apply analytic derivatives in the language specification.

 Case Sensitive

Check this option if you want to create a case-sensitive language specification

(recommended). If this option is unchecked, you should specify a “Unique Naming Index

Separator”.

Number Settings:

 Prefix

Here you can specify a prefix to all numbers in the generated code. The number will be

appended to the prefix, e.g. the number “3.5” combined with the prefix “pre” will lead to

the expression “pre3.5”.

 Suffix

Here you can specify a suffix to all numbers in the generated code. The suffix will be

appended to all numbers, e.g. the number “3.5” combined with the suffix “D” will lead to

the expression “3.5D”.

 Force Floating Point

Check this option if you want to use floating point number representation even for

integer values.

System Type:

 NLE

Select this option if you want to create a language specification for algebraic equation

systems. This selection enables the “NLE specific option” section of this panel containing

the checkbox “’Cape Open Unit Operation’ Supported”.

 ODE

Select this option if you want to create a language specification for ordinary differential

equation systems.

 DAE

Select this option if you want to create a language specification for differential algebraic

equation systems

NLE specific option:

 ‘Cape Open Unit Operation’ Supported

Check this option if you want to create a language specification supporting Cape Open

unit operations. You will have to specify special function call names and names for basic

Cape Open entities like temperature, pressure, flow, enthalpy, and fraction.

Example

Operations

Screenshot

Options

General remarks:

In the “Operations” panel you define how your user-defined language specification has to generate

the mathematical operations and parentheses. For each of the binary (e.g. multiplication) and unary

(e.g. sine) operators you can set Prefix and Suffix if necessary. Binary operators may also need an

Infix or have to swap the operands. All operators have to be defined (i.e. non-empty) before you

should use your language specification for productive code generation. In the “Specifications“ text

field you can see all operator definitions you have already set.

Operators:

 Add

The mathematical addition operation, e.g. “4+5”

 Cosine

The mathematical cosine function, e.g. “cos(0)”

 Divide

The mathematical division operation, e.g. “4/5”

 Exponential

The mathematical exponential function, e.g. “exp(3)”

 Multiply

The mathematical multiplication operation, e.g. “4*5”

 NaturalLogarithm

The mathematical natural logarithm function, e.g. “ln(1)”

 Parentheses

Parentheses, for example “(” and “)”, are used to group the mathematical terms and

numbers to different expressions. Example: “4+(5*6)” vs. “(4+5)*6”

 Power

The mathematical power operation, e.g. “53“ (say: “5 to the power of 3”)

 RadixRoot

The mathematical n-th root function, e.g. “8(1/3)” (say: “third root of eight”)

 Sine

The mathematical sine function, e.g. “sin(0)”

 Subtract

The mathematical subtraction operation, e.g. “5-4”

Specification:

 Prefix

Character to be put in front of the first operand

 Infix

Character to be put between the first and the second operand

 Suffix

Character to be put behind the second operand

 Swap LR

Check this if you to swap the first and the second operand. This may be interesting for

the radix root operator.

 Submit

Press this button to set the prefix, infix, suffix, and swap information of the currently

active operator

Example

Variable Namings

Screenshot

Options

General remarks:

In the “Operations” panel you define how your user-defined language specification has to interpret

and display the variables of the equation system in the generated code. The two available

alternatives are on the one hand an approach based on the global index of the variable and on the

other hand an approach using the meaning of the variable (i.e. namespace, base name, superscripts,

subscript, and indexes). At least one separator has to be non-empty to be able to use the language

specification for code generation.

Strategy:

 Use Global Index

Choose this option if you don’t want your language specification to use meaningful

variable names. All variables will be identified by their global index inside the overall

equation system. Prefix and Suffix should be set, e.g. prefix “X(“, and suffix “)” to get

“X(23)” (variable with global index 23).

 Use Variable Naming

Choose this option if you want your language specification to use meaningful variable

names. Affixes and separators for the different variable naming parts have to be defined.

For case “Variable Naming”:

 Variable naming affixes

Define affixes (prefix, suffix) for the variable namings. An example is to enter the prefix

“Model.” to let all variables begin with “Model.” like “Model.stdPLVoi1”.

 Separator: Namespace to base name

Define the separator between the namespace and the base name of the variable

namings

 Separator: Leading superscript

Define the separator between the base name and the superscripts of the variable

namings

 Separator: Leading subscript

Define the separator between the superscripts and the subscript of the variable namings

 Separator: Leading index name

Define the separator in front of index names of the variable namings

 Separator: Index name to index value

Define the separator between the index name and the index value of the variable

namings

Specification:

 Prefix

Character to be put in front of an expression

 Infix

Character to be put in between two expressions

 Suffix

Character to be appended to an expression

 Submit

Press this button to set the prefix, infix, and suffix information of the currently active

separator or affix

Example

External Functions

Screenshot

Options

General remarks:

In the “External Functions” panel MOSAIC interfaces can be added as function interfaces supported

by this Language Specificator. Code for MOSAIC functions, that are part of a model and that use a

MOSAIC interface, can this way be generated. In this panel the code to call the function and the code

to implement the function is specified. It has to be remarked that code is actually only generated for

these functions if the “Direct Functions Supported” option in the “Global Language Settings” panel is

checked.

Supported Function Interfaces:

 Interface

Name or location of a function interface that has been added as a supported function

interface

 Add

Button to add a function interface to the list of supported function interfaces

 Remove

Button to remove the selected function interface from the list of supported function

interfaces

Interface Fields:

The table of the interface fields lists all fields that have been specified in the respective MOSAIC

interface. The handle is not specified by the interface and has to be set by the creator of the

Language Specificator

 Direction

This is the direction of the field. For function interfaces the possible values are “In” and

“Out”, with exactly one field of direction “out” and an arbitrary number of fields with

direction “in”. The direction can’t be changed here

 Dim

This is the dimension of the field. Possible values are “Scalar” and “Vector”. The

dimension can’t be changed here

 Variable

This is the name of the field variable as it will be used in generated code. The variable

name can’t be changed here

 Name

This is the meaning of the field as it has been stored in the MOSAIC interface. For Cape

Open function interfaces the name are predefined starting with “CO”. The field name

can’t be changed here

 Handle

This is the name of the placeholder as it has to be used in the implementation code and

in the call code definition. The handle is not a property of a MOSAIC interface and

therefore has to be set here

Function Specification:

 VectorSepSymbol

This is the symbol that is used to separate the different elements of a vector in the generated

code. The handle (placeholder) for the separation symbol is fixed to “_SEP_SYMBOL_”

 Calculation Expression

This is the expression that actually calculates the return value of the function. The handle

(placeholder) for this expression is fixed to “_VALUE_”

 Implementation Code

This is the full code that is used to define and implement the function in the generated code.

It is recommended to use the above “calculation expression” here, but it is not necessary

Accessible Code Handles:

Some useful code handles (placeholders) have been fixed and are available for the implementation

code and call code.

 Function name

This is the full name of the function. The name is fixed by the MOSAIC function that has been

included in the model the code is generated for. The handle (placeholder) is fixed to

“_FUN_NAME_”

 Function name (short)

This is the short name of the function. The name is fixed by the id of the MOSAIC function

that has been included in the model the code is generated for. The short name is particularly

useful for programming languages with a limited length of function names like Scilab. The

handle (placeholder) is fixed to “_FUN_NAMESHORT_”

 Function output variable

This is the actual function output variable. The output variable is different for each

application (“function call”) of the function. The handle (placeholder) is fixed to

“_FUN_OUT_VAR_”

Function Call:

 CallCode

This is the full code that is used to call the function in the generated code. The function call is

used to calculate the value of a variable by calling the function with specific input values. It is

usually necessary to use the handle for the function output variable (“_FUN_OUT_VAR_”)

here to correctly assign the calculation/ function call to the variable to be calculated

Example

Code Generation Properties

Screenshot

Options

General remarks:

In the “Code Generation Properties” panel options for the code generation can be specified. The

options entered here will be visible to users when the LSUD is loaded in the simulation (evaluation)

using the “Evaluation” tab and the Language Specification section. Typical properties are for example

number of iterations, tolerances, etc. If predefined options are entered for properties here, users will

only be able to select one of these options for code generation.

Available Properties:

 Name

The name of the property as it will later be displayed to users selecting this Language

Specificator for code generation

 Handle

The identifier of this property as it can be used in the code elements panel. It is the

placeholder where the value of the property will be inserted

 Type

The data type of the property. Possible options are Integer, Float (Floating point

number), String, and Boolean (Two-Option-String)

 Default

The default value of the property that will be inserted in the generated code if the user

does not specify another value

 Add Property

Button to open a dialog to specify a new option including name, handle, type, and

default value

 Remove Property

Button to delete the currently selected available property

Predefined Options:

 Option

Each entry in this table will be one entry in the combobox in the code generation section

where the code generator and solver properties are set

 Add

Button to add a new predefined option to the currently selected property

 Remove

Button to remove the selected predefined option from the current property

Code Export File:

Users can export the generated code of a simulation to hard disk. Here it can be specified which file

name and which extension will be used when this Language Specificator is selected for code

generation

 Name

The name of the exported code file

 Extension

The extension of the exported code file

Example

Code Elements

Screenshot

Options

General remarks:

The “Code Elements” panel is the central part of the “Language Specification” editor. In this panel

the elements of the structure of the code to be generated are defined. The code has by definition a

tree structure with a node called “FullCode” as the root node. Each node is a code block. Code blocks

are of different types and can have sub blocks. Blocks without sub blocks are leaves of the tree

structure. Global and local code properties exist and can be accessed in the code blocks. An example

for a global code property is the number of equations in an algebraic equation system

(“_DIM_EQUAS_”). The separator symbol (“_SEP_SYMBOL_”) is an example for a local code property.

The user specifies each code block separately by plain text, thereby using the unique names

(“Handles”) of the properties and of the sub blocks. When the language specification is applied on an

evaluation, all handles will be recursively replaced by the respective property value or code block

specification.

Elements Tree:

 Block Tree

The structure of the code is visualized by this tree. Code blocks and properties can be

selected. Information about the selected element will be displayed in the other parts of

this panel

 Create Node

Create a new sub block as a child of the currently selected code block. Some predefined

code blocks cannot have children (e.g. “DirectFunctionsCall”)

 Delete Node

Remove the select node from the tree structure. All sub blocks will be removed as well

 Up

Move the selected node up in the tree structure. The node’s level in the tree is not

changed. The node changes the position with its preceding sibling

 Down

Move the selected node down in the tree structure. The node’s level in the tree is not

changed. The nodes changes the position with its subsequent sibling

Block Types:

 FullCode

The root code block of the code tree, it can’t be deleted

 Block

A simple code block, sub blocks can be added

 Differential Variable

A code block to access the differential variable of a (dynamic) system

 Direct Functions Impl

A code block for the definition/implementation of functions, contains two sub blocks to

access the input variables and input parameters

 Direct Functions Call

A code block to call functions, contains two sub blocks to access the function call

variables and function call parameters

 LoopBlocks:

LoopBlocks make collections of system parts accessible in a loop. For each element of the

collection the content of the specification will be generated.

o Namespaces

Loop over the namespaces, contains the short, original, and user-defined

namespace

o Parameters

Loop over the parameters, contains all known variables

o External Parameters

Loop over parameters that have been defined in parameter lists

o Constant Parameters

Loop over all variables that have been fixed as design variables

o EquationsAE (NLE, DAE)

Loop over all algebraic equations

o Variables (NLE)

Loop over all unknown variables

o InputPorts (NLE)

Loop over all input ports, contains a (loop) sub block to access the port variables

o OutputPorts (NLE)

Loop over all output ports, contains a (loop) sub block to access the port

variables

o EquationsODE (ODE, DAE)

Loop over all differential equations

o StateVariablesExplicit (ODE, DAE)

Loop over all explicit states

o StateVariablesImplicit (DAE)

Loop over all implicit states

Input Specification:

 Editor

In this editor you can specify the content of the selected block or see a description of the

meaning of the selected system/code property (e.g. “VarsDimension”)

 Show Invisible Characters

Check this option to display the invisible characters (whitespaces, tabs and newlines)

 CtrStart

In this field you can enter the start value of the counter in loop blocks

Handles:

 Handle

The handle is the unique name of the selected code block. It can be changed and usually

starts and ends with an underscore (“_”)

 Available Subhandles

This list shows all subhandles that are available for the selected code block. The list

contains global handles like “_DIM_VARS_”, specific local handles like “_SEP_SYMBOL_”,

and the handles of existing (maybe userdefined) subblocks, e.g. “_MySubBlock_”.

Code Generation Preview:

 Text Field

This text field displays the generated code for a selected code block if code has been

generated

 Show Code

Press this button to generate code according to the selected code block, based on the

evaluation that has been loaded in the “Overall Results” panel

Example

Overall Results

Screenshot

Options

General Remarks:

In the “Overall Results” panel you load an evaluation to test the code generation of your language

specification. You need to load an evaluation in this panel to activate the “Generate Full Code”

button and to be able to generate code for the different code blocks in the “Code Elements” panel.

Load File:

 Evaluation

Like in other editors of MOSAIC you can use Unload, Reload, Search and Select to set (or

unset) a model element. In this case an evaluation can be loaded to test the code generation

with your language specification.

Status Information:

 Text Field

This text field displays status information about the evaluation. It is the same as in the

“Evaluate” panel of the “Evaluate/Simulation” section of MOSAIC

Code:

 Text Field

This text field displays the generated code if code has been generated

 Generate Full Code

Press this button to generate code according to your user-defined language specification and

based on the evaluation that has been loaded before

Example

Description
This “Description” panel is the same as in all the other MOSAIC editors. You should use it to give a

detailed explanation on how to use your user-defined language specification. The description will be

displayed in the code generation panel of the Evaluate/Simulation section of MOSAIC. Of course you

can also add additional documentation files to this Language Specification by using the file upload

and attachment possibilities.

Keywords
This “Keyword” panel is the same as in all the other MOSAIC editors. You can add keywords to this

Language specification to attach some meta-information. Possible appropriate keywords may

describe the type of models this language specification can be applied (algebraic/NLE, or ODE, or

DAE) or the programming language family (Fortran, C/C++, Matlab, …). This information can later on

be used to filter the language specifications when it comes to opening in this editor or loading in

other editors.

Tips, Tricks &Workflow Suggestions

Documentation
A language specification, without good instructions how to use it, is worthless for people who

haven’t designed it themselves. So you should for example explicitly mention which type of equation

systems (AE/NLE, ODE, DAE) you support with your language specification by writing it down in the

description and by using keywords.

Re-Use
If most of the work already has been done – don’t do it again. So re-use what has been done before

by opening a specification and saving it as another language specification to be modified in the next

step. It makes sense to copy language specifications supporting the same type of equation systems

you want to support or by selecting a language specification that will create code for the same

programming language you are targeting.

Have a code structure in mind (and on paper) before starting
Don’t start building the code structure just “from brain to screen”, use a structure you have written

down on paper. The code blocks you create always have a tree structure with the “FullCode” block

being the root. It is up to you how fine-grained you separate the different parts of your code tree, i.e.

how many levels your tree has. I nevertheless propose to design smaller, hierarchically ordered

blocks in contrast to a few very big code blocks in one level. This will later on not only help you when

it comes to systematically improving and extending the code structure (meaningful names of the

code blocks help a lot!). Smaller blocks also help when it comes to debugging, because the code

preview functionality allows you to check each block separately.

Typical Workflow

Before creating a new LSUD:

1. Choose the targeted programming language, e.g. python

2. Choose the type of equation system you want to support, e.g. NLE/AE

3. Look for an already existing LSUD for the same programming language and the same type of

equation system. If you are successful: Load this LSUD (A) and save it as another LSUD (B).

This way you have write access (B) and you do not change the existing LSUD (A) by accident

(in case you have write access to A, too).

Creating the new LSUD:

1. If possible: Open the “prepared” LSUD (B)

2. Check or set the System Type (DAE, ODE, NLE)

3. Check or redefine the operators

4. Check or redefine the Variable Naming settings (Affixes, Separators)

5. Enter a description in the Description Tab

6. Select keywords in the Keywords Tab

7. Build the code block tree in the “Code Elements” Panel

8. Don’t forget to click on “Save” when you made progress

9. Add support for External Functions if necessary

10. Set the name and extension for the export file

11. Define properties and their options for code generation

Testing and Using the LSUD:

1. Load an evaluation in the “Overall Results” panel, click on “Generate Full Code”, and check

the result.

2. In the “Code Elements” panel: Select a code block and click on “Show Code” (needs a loaded

evaluation, see “Overall Results” panel)

3. In the “Evaluate/Simulation” section, when it comes to code generation (“Evaluation” tab),

activate “User-defined Language Specification”, and click on “Select” or “Search” to choose

your own language specification for code generation.

