August/September 2015

MOSAIC - Manual for the ,Language
Specification” editor

Introduction

The “Language Specification” editor can be a very powerful tool. It is used to define new
specifications of “how to generate code” for arbitrary (existing and non-existing) programming
languages. Users can do this via a graphical user interface and without changing the MOSAIC source
code. The user specifies how variables have to be interpreted, how the standard mathematical
operations look like in the desired programming language, and of which different nested code blocks
the final overall code will be composed. Additionally calls for external functions and code generation
properties can be defined. In the following part of this manual all panels of the editor will be
introduced by explaining the ideas of the available options and by showing a language specification
example for the programming language “Matlab”. In the last part of this manual the typical workflow

is covered.

The panels of the “Language Specification” editor

Global Language Settings

Screenshot
1€ MOSAIC 2015-09-21 [FEEER)

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Expant | IcasMoT | Dacumentation | Extras|

otation uation | Function arameter List | Transformation onnector uation System | Interface | Language Specification |VarSpec Viewer
Notation | Equation | Function | P, List | Transformation | C Equation System | Interface | Language Specifi VarSpec V

Location [Open | [Search | [New | | Sove | [Saveds|

Global Language Settings | Operations | Variable Namings | Extemal Functions | Code Generation Properties | Cade Elements | Overall Results | Description | Keywords|

Language Settings Number Settings
[Direct Functions Supported Prefix Suffix Result

[] Use Analytic Derivatives
Case Sensitive

Force Floating Point
U e S = 2

Sample Value: 42

System Type NLE specific option
@ NLE
@) ODE
© DAE

[] 'Cape Open Unit Operation' Supported

Minimum Specifications Complete :-:

Options
General remarks:

Creating a new language specification starts with this panel, where you mainly set the type of
equation systems you want to support with your user-defined language specification. The “NLE
specific option” is for advanced users. The type “DAE” has not been extensively tested so far.

Language Settings:
e Direct Functions Supported

Check this option if you want to use direct function calls and implementations in your
language specification. If this option is unchecked, the code element blocks
“DirectFunctionsimpl” and “DirectFunctionsCall” will be ignored.

e Use Analytic Derivatives

Check this option if you want to use analytic derivatives. This is not tested and it is not
known how to actually apply analytic derivatives in the language specification.

e (Case Sensitive

Check this option if you want to create a case-sensitive language specification
(recommended). If this option is unchecked, you should specify a “Unique Naming Index

Separator”.
Number Settings:
o Prefix

Here you can specify a prefix to all numbers in the generated code. The number will be
appended to the prefix, e.g. the number “3.5” combined with the prefix “pre” will lead to
the expression “pre3.5”.

e Suffix

Here you can specify a suffix to all numbers in the generated code. The suffix will be
appended to all numbers, e.g. the number “3.5” combined with the suffix “D” will lead to

the expression “3.5D”.

e Force Floating Point

Check this option if you want to use floating point number representation even for

integer values.
System Type:
e NLE

Select this option if you want to create a language specification for algebraic equation
systems. This selection enables the “NLE specific option” section of this panel containing
the checkbox “’Cape Open Unit Operation’ Supported”.

e ODE

Select this option if you want to create a language specification for ordinary differential
equation systems.

e DAE

Select this option if you want to create a language specification for differential algebraic
equation systems

NLE specific option:
e ‘Cape Open Unit Operation’ Supported

Check this option if you want to create a language specification supporting Cape Open
unit operations. You will have to specify special function call names and names for basic
Cape Open entities like temperature, pressure, flow, enthalpy, and fraction.

Example

IE MOSAIC 2015-09-2;

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Export | IcasMoT | Documentation | Extras|

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location 53432: Isp_matlab_nle_with_CapeOpen_and_functions.moslsp [Open | [search | [New | | seve | [saveas|

Global Language Settings | Operations | Variable Namings | Extemal Functions | Code Generation Propertics | Code Elements | Overall Results | Description | Keywords|

Language Settings Number Settings
Direct Functions Supported Prefix Suffix Result

[F] Use Analytic Derivatives

Case Sensitive

Force Floating Point
Unique Naming Index Separator: @ g

Sample Value: 42

System Type NLE specific option
@) NLE
© ODE
© DAE

[] 'Cape Open Unit Operation' Supperted

Minimum Specifications Complete :-:

Operations

Screenshot
IE MOSAIC 2015-09-2;

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Expeit | IcasMeT | Documentation | Extras

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location [Open | [search | [New | | seve | [saveas|

|Global Language Settmgsl Operations |Vanable Nammgsl External Functions | Cede Generation Propertlasl Code Elemantsl Overall Resultsl Description I Kaywordsl

)]|

Suffix Swap LR Result

Specifications

Subtract

Multiply

o
5

JLEIL

5
]

Sinus

Cosinus

Parentheses

Minimum Specifications Incomplete -

Options
General remarks:

In the “Operations” panel you define how your user-defined language specification has to generate
the mathematical operations and parentheses. For each of the binary (e.g. multiplication) and unary
(e.g. sine) operators you can set Prefix and Suffix if necessary. Binary operators may also need an
Infix or have to swap the operands. All operators have to be defined (i.e. non-empty) before you
should use your language specification for productive code generation. In the “Specifications” text
field you can see all operator definitions you have already set.

Operators:

e Add

The mathematical addition operation, e.g. “4+5”
e Cosine

The mathematical cosine function, e.g. “cos(0)”
e Divide

The mathematical division operation, e.g. “4/5”
e Exponential

The mathematical exponential function, e.g. “exp(3)”

e Multiply

The mathematical multiplication operation, e.g. “4*5”
e NaturalLogarithm

The mathematical natural logarithm function, e.g. “In(1)”
e Parentheses

and

ll(” II)”

Parentheses, for example , are used to group the mathematical terms and

numbers to different expressions. Example: “4+(5*6)” vs. “(4+5)*6”
e Power
The mathematical power operation, e.g. “5“ (say: “5 to the power of 3”)
e RadixRoot
The mathematical n-th root function, e.g. “8™” (say: “third root of eight”)
e Sine
The mathematical sine function, e.g. “sin(0)”
e Subtract
The mathematical subtraction operation, e.g. “5-4”
Specification:
e Prefix
Character to be put in front of the first operand
e Infix
Character to be put between the first and the second operand
e Suffix
Character to be put behind the second operand
e SwaplLR

Check this if you to swap the first and the second operand. This may be interesting for
the radix root operator.

e Submit

Press this button to set the prefix, infix, suffix, and swap information of the currently
active operator

Editors/Model | Evaluate/Si [Analysis | | Unit Export | IcasMoT | Documentation | Extras|

| Notatiunl Equatiunl Functiunl Parameter List | Transformation | Connector | Equation System |]nterface| Language Specification |Va|Spec Vlewel‘

Location |53432: 1sp_matlab_nle_with_CapeDpen_and functions.moslsp | [Open_ | [search | [New | [seve | [Savess)

| Global Language Settings | Operations | Varigble Namings | Extemal Functions | Code Generation Propertics | Code Elements | Overall Resuits | Description | Keywards|
Selection: Add

[| B [LEFT+RIGHT
Infix Suffix Swap LR Result

Specifications

Add : LEFT+RIGHT
Subtract Cosinus : cos(MID)

Divide : LEFT/RIGHT
Exponential : exp(MID)
Multiply : LEFT*RIGHT
NaturalLogarithm : log(MID)
Parentheses : (MID)

Power : LEFT"RIGHT
RadixRoot : (RIGHT)*(1.0/LEFT)
Sinus : sin(MID)

Subtract : LEFT-RIGHT

Multiply

o
&

o
<
i
S
5 g
a @

]

Sinus
Cosinus

Parentheses

Minimum Specifications Complete ™

Variable Namings

Screenshot

Editors/Model lcasMeT | Documentation | Extras

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Locatien [| [Copen] [Search] [(Mew] [Seve | [Savess]

|Glabal Language Settings | Dpelatlans‘ Wariable Namings |E)(lema| Functions | Code Generation Plopemsl Code Eiemenlsl Overall Rsuhsl Dscnptlonl Keywcmkl

Selection: Mamespace to base name

Prefix Infix Suffix Result

Strategy Sample Variable Specifications

() Use Global Index Global Index: 23
Top Level Naming:

g
to
T mrmr TR s

Separators

LA

Minimum Specifications Incomplete =

Options
General remarks:

In the “Operations” panel you define how your user-defined language specification has to interpret
and display the variables of the equation system in the generated code. The two available
alternatives are on the one hand an approach based on the global index of the variable and on the
other hand an approach using the meaning of the variable (i.e. namespace, base name, superscripts,
subscript, and indexes). At least one separator has to be non-empty to be able to use the language
specification for code generation.

Strategy:
e Use Global Index

Choose this option if you don’t want your language specification to use meaningful
variable names. All variables will be identified by their global index inside the overall
equation system. Prefix and Suffix should be set, e.g. prefix “X(“, and suffix “)” to get
“X(23)"” (variable with global index 23).

e Use Variable Naming

Choose this option if you want your language specification to use meaningful variable
names. Affixes and separators for the different variable naming parts have to be defined.

For case “Variable Naming”:
e Variable naming affixes

Define affixes (prefix, suffix) for the variable namings. An example is to enter the prefix
“Model.” to let all variables begin with “Model.” like “Model.stdPLVoil”.

e Separator: Namespace to base name

Define the separator between the namespace and the base name of the variable
namings

e Separator: Leading superscript

Define the separator between the base name and the superscripts of the variable
namings

e Separator: Leading subscript

Define the separator between the superscripts and the subscript of the variable namings
e Separator: Leading index name

Define the separator in front of index names of the variable namings

e Separator: Index name to index value

Define the separator between the index name and the index value of the variable

namings
Specification:
o Prefix
Character to be put in front of an expression
o Infix
Character to be put in between two expressions
o Suffix
Character to be appended to an expression
e Submit
Press this button to set the prefix, infix, and suffix information of the currently active
separator or affix
Example

f imosmc 2015-09- ==

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Export | IcasMoT | Documentation | Extras

| Motation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location 53432: Isp_matlab_nle_with_CapeOpen_and_functions.moslsp | Open | [Search] [New] Save

|Global Language Settings | Operatlons‘ Variable Namings |Extama\ Functions | Code Generation Propertlasl Code Elemantsl Overall Resultsl Descripticn I Kaywordsl
Selection: Mamespace ta base name

i std P_LV o il k2

Prefix Suffix Result

Strategy Sample Variable Specifications

o S N N AU
© Use Global Index Global Index: 23 Variable Naming Used. Result: - std P LV o_il_k2

@ Use Variable Naming Top Level Naming:

std
Variable naming affixes

Separators

Minimum Specifications Complete)

External Functions

Screenshot

"I MOSAIC 2015-00-

Editors/Model |Eva|uate¢"5\mulation | Optimization | Analysis | Measurements | Unit Export | IcasMoTl Documentation | Extras‘

| Notation | Equation | Function | Parameter List | Transformation | Connector | Equation System |Interface| Language Specification |\|’ar5pec \c’iewer|

Location [Open] [Search I [Mew] Save

| Global Language Settings | Operations | Variable Namings| External Functions | Code Generation Propert\esl Code Elementsl Overall Re;ultsl Description | Keyword;|

Supported Function Interfaces: Interface Fields:

Interface Direction i Variable

Remove

BT S e Accessible Code Handles:

Function name: _FUN_MNAME_
Function name (short): _FUN_MNAMESHORT_
Function output variable: _FUN_OUT_VAR_

VectorSepSymbol _SEP_SYMBOL_

Calculation Expression _WALUE_

4

Implementation Code Call Code (use the handle for the output variable)

Options
General remarks:

In the “External Functions” panel MOSAIC interfaces can be added as function interfaces supported
by this Language Specificator. Code for MOSAIC functions, that are part of a model and that use a
MOSAIC interface, can this way be generated. In this panel the code to call the function and the code
to implement the function is specified. It has to be remarked that code is actually only generated for
these functions if the “Direct Functions Supported” option in the “Global Language Settings” panel is
checked.

Supported Function Interfaces:
e Interface

Name or location of a function interface that has been added as a supported function
interface

e Add
Button to add a function interface to the list of supported function interfaces

e Remove

Button to remove the selected function interface from the list of supported function
interfaces

Interface Fields:

The table of the interface fields lists all fields that have been specified in the respective MOSAIC
interface. The handle is not specified by the interface and has to be set by the creator of the
Language Specificator

e Direction

This is the direction of the field. For function interfaces the possible values are “In” and
“Out”, with exactly one field of direction “out” and an arbitrary number of fields with
direction “in”. The direction can’t be changed here

e Dim

This is the dimension of the field. Possible values are “Scalar” and “Vector”. The
dimension can’t be changed here

e Variable

This is the name of the field variable as it will be used in generated code. The variable
name can’t be changed here

e Name

This is the meaning of the field as it has been stored in the MOSAIC interface. For Cape
Open function interfaces the name are predefined starting with “CO”. The field name
can’t be changed here

e Handle

This is the name of the placeholder as it has to be used in the implementation code and
in the call code definition. The handle is not a property of a MOSAIC interface and
therefore has to be set here

Function Specification:
e VectorSepSymbol

This is the symbol that is used to separate the different elements of a vector in the generated
code. The handle (placeholder) for the separation symbol is fixed to “_SEP_SYMBOL _”

e Calculation Expression

This is the expression that actually calculates the return value of the function. The handle
(placeholder) for this expression is fixed to “_VALUE_”

e |mplementation Code

This is the full code that is used to define and implement the function in the generated code.
It is recommended to use the above “calculation expression” here, but it is not necessary

Accessible Code Handles:

Some useful code handles (placeholders) have been fixed and are available for the implementation
code and call code.

e Function name

This is the full name of the function. The name is fixed by the MOSAIC function that has been
included in the model the code is generated for. The handle (placeholder) is fixed to
“_FUN_NAME_"

e Function name (short)

This is the short name of the function. The name is fixed by the id of the MOSAIC function
that has been included in the model the code is generated for. The short name is particularly
useful for programming languages with a limited length of function names like Scilab. The
handle (placeholder) is fixed to “_FUN_NAMESHORT_"

e Function output variable

This is the actual function output variable. The output variable is different for each
application (“function call”) of the function. The handle (placeholder) is fixed to
“ FUN_OUT_VAR_”

Function Call:
e CallCode

This is the full code that is used to call the function in the generated code. The function call is
used to calculate the value of a variable by calling the function with specific input values. It is
usually necessary to use the handle for the function output variable (“_FUN_OUT_VAR_")
here to correctly assign the calculation/ function call to the variable to be calculated

Editors/Modlel |Evaluate/Simulation | O

| Unit Export I IcasMoTI Documentatmnl E)mas|

| Motation | Equationl Function | P ter List | T i | Connector | Equation System |Interface| Language Specification |\|’alSpec Viawel|

Location 53432: lsp_matlab_nle_with_CapeOpen_and_functions. moslsp l Open] [Sealch] [Mew] Save [Savensl

| Global | Settings | Operations | Variable Namings| Extemal Functions | Code G i ies | Code Bl | Overall Results | Description | Keywords|

Supported Function Interfaces: Interface Fields:

Interface Direction Dim Variable Mame Handle

51527: itfc_CO_temperature_phx.mosint (LSUD) In Scalar std.h CO molar enthalpy ENTHALPY_
42350: itfc_CO_enthalpy_general.mosint (LSUD) Cut Scalar std. T CO temperature _TEMPERATURE_
In Vector std.a_{i} C0O overall mole f... _FRACTION_

In Scalar std.p CO pressure _PRESSURE_

[e]

R S e Accessible Code Handles:

Function name: _FUN_NAME_
VectorSepSymbol _SEP_SYMEOL. Function name (short):_FUN_NAMESHORT_

Calculation Expression _VALUE Function output variable: _FUN_OUT_VAR_

(OM_],'pressure’,_PRESSURE_ 'enthalpy’,_ENTHALRY)
] i 3

Implementation Code Call Code (use the handle for the output variable)

function]_TEMPERATURE_] = _FUN_NAMESHORT_(_
PRESSURE__ENTHALPY__FRACTION) %_
FUMN_NAME_

| FUN_OUT_VAR_ =_FUN_NAMESHORT_(_PRESSURE__ENTHALPY__FRACTION_); %_FUN_NAME_

global co_handle
TEMPERATURE = VALUE
end

Code Generation Properties

Screenshot
[S |

Editors/Model |Evakuatef imulati I imizati i |Unit Export I IcasMoTI Docnmentationl Elmas|

| Notationl Eqnationl Functionl P ter List | T i | Connector | Equation System |Inﬁeriace| Language Specification ‘ValSpec Viewel|

Location [Open] [Sealch] [MNew] Save [SaveAs]

‘ Global L Settings | Operati I Variable Mami I External anchons| Code Generation Properties | Code Elements | Overall Results | Description | Ke_!,wolds|

Available Properties: Predefined Options:

Name Handle Option

Add Property Remove Property

Code Export File:

Narne: Extension:

Options
General remarks:

In the “Code Generation Properties” panel options for the code generation can be specified. The
options entered here will be visible to users when the LSUD is loaded in the simulation (evaluation)
using the “Evaluation” tab and the Language Specification section. Typical properties are for example
number of iterations, tolerances, etc. If predefined options are entered for properties here, users will
only be able to select one of these options for code generation.

Available Properties:
e Name

The name of the property as it will later be displayed to users selecting this Language
Specificator for code generation

e Handle

The identifier of this property as it can be used in the code elements panel. It is the
placeholder where the value of the property will be inserted

e Type

The data type of the property. Possible options are Integer, Float (Floating point
number), String, and Boolean (Two-Option-String)

e Default

The default value of the property that will be inserted in the generated code if the user
does not specify another value

e Add Property

Button to open a dialog to specify a new option including name, handle, type, and
default value

e Remove Property
Button to delete the currently selected available property
Predefined Options:
e QOption

Each entry in this table will be one entry in the combobox in the code generation section
where the code generator and solver properties are set

e Add
Button to add a new predefined option to the currently selected property

e Remove

Button to remove the selected predefined option from the current property
Code Export File:

Users can export the generated code of a simulation to hard disk. Here it can be specified which file
name and which extension will be used when this Language Specificator is selected for code
generation

e Name
The name of the exported code file
e Extension
The extension of the exported code file
xample

(1 MOsAIC 2015-09-21 =

Editors/Model |Eva|uate."5\mulation | Optimization | Analysis | Measurements | Unit Export | IcasMoTl Documentation | Extras‘

| Notation | Equation | Function | Parameter List | Transformation | Connector | Equation System |Interface| Language Specification |Var5pec Vlewer|

Location 53432: Isp_matlab_nle_with_CapeOpen_and_functions.maoslsp [Open] [Search] [Mew] Save

| Global Language Settings | Operations | Variable Namingsl External Functions| Code Generation Properties | Code Elementsl Overall Re:ultsl Description | Keywords|

Available Properties: Predefined Options:

MName Handle Type Default Option

BOOLEAN yes] yes

TolFun _TOLFUMN_ FLOAT le-6 maybe
CollocationOrder _COLLORDER_ INTEGER 3

ModelMame _MODELNAME_ STRING My_lovely_model
Maxdter _MAXITER_ INTEGER 10000

CO Package Man... _COPACKMAN_ STRING <unspecified>
CO Property Pac.. _COPROPPACKA... STRING <unspecified>
Compound _COMPOUND_ STRING <unspecified>

Add Property Remove Property

Code Export File:

Narme: Extension:

simulation .\m

Code Elements

Screenshot
IE MOSAIC 2015-09-2;

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Expeit | IcasMeT | Documentation | Extras

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location [open | [search | [New | | seve | [saveas|

|Global Language Settings | Operations | Variable Nammgsl External Functions | Cede Generation Propertlasl Code Elements | Overall Resultsl Description I Kaywordsl

Elements Tree Input Specification Handles

Default-spec:-Please- specify- your- code-here!d Handle
“L] ParsDimension _FULL_PROBLEM_SOLVING_CODE_
-] CapeOpenEnthalpy
~[] CapeOpenPressure
[CapeOpenTemperature CO_PROP_COMP_FLOW_
D EquasDimension CO_PROP_ENTHALPY_
-] CapeOpenFraction
-] VarsDimension
D CapeOpenCompFlow
CapeOpenTotalFlow
_DIR_FUN_CALL_LOOP_3_[Directl
_DIR_FUN_IMPL_LOOP_6_[Directf

Awailable Subhandles

CO_PROP_FRACTION_

CO_PROP_PRESSURE_
CO_PROP_TEMPERATURE_

:C O_PROP_TOTAL_FLOW_
_DIM_EQUAS_

DIM_PARS_
DIM_VARS_

DIR_FUN_CALL_LOOP_3_
DIR_FUN_IMPL_LOOP_6_

Show Invisible Characters CtrStart 4 m

Code Generation Preview

Selected File: Ne Evaluation loaded. Check the Overall Results Tab!

Selected Block:

< m

Delete Node

Minimum Specifications Incomplete -

Options
General remarks:

The “Code Elements” panel is the central part of the “Language Specification” editor. In this panel
the elements of the structure of the code to be generated are defined. The code has by definition a
tree structure with a node called “FullCode” as the root node. Each node is a code block. Code blocks
are of different types and can have sub blocks. Blocks without sub blocks are leaves of the tree
structure. Global and local code properties exist and can be accessed in the code blocks. An example
for a global code property is the number of equations in an algebraic equation system
(“_DIM_EQUAS _"). The separator symbol (“_SEP_SYMBOL_") is an example for a local code property.
The user specifies each code block separately by plain text, thereby using the unique names
(“Handles”) of the properties and of the sub blocks. When the language specification is applied on an
evaluation, all handles will be recursively replaced by the respective property value or code block
specification.

Elements Tree:
e Block Tree

The structure of the code is visualized by this tree. Code blocks and properties can be
selected. Information about the selected element will be displayed in the other parts of
this panel

e (Create Node

Create a new sub block as a child of the currently selected code block. Some predefined
code blocks cannot have children (e.g. “DirectFunctionsCall”)

e Delete Node
Remove the select node from the tree structure. All sub blocks will be removed as well
° Up

Move the selected node up in the tree structure. The node’s level in the tree is not
changed. The node changes the position with its preceding sibling

e Down

Move the selected node down in the tree structure. The node’s level in the tree is not
changed. The nodes changes the position with its subsequent sibling

Block Types:
e FullCode
The root code block of the code tree, it can’t be deleted
e Block
A simple code block, sub blocks can be added
e Differential Variable
A code block to access the differential variable of a (dynamic) system
e Direct Functions Impl

A code block for the definition/implementation of functions, contains two sub blocks to
access the input variables and input parameters

e Direct Functions Call

A code block to call functions, contains two sub blocks to access the function call
variables and function call parameters

e LoopBlocks:

LoopBlocks make collections of system parts accessible in a loop. For each element of the
collection the content of the specification will be generated.

o Namespaces

Loop over the namespaces, contains the short, original, and user-defined
namespace

o Parameters
Loop over the parameters, contains all known variables

o External Parameters

Loop over parameters that have been defined in parameter lists
o Constant Parameters
Loop over all variables that have been fixed as design variables
o EquationsAE (NLE, DAE)
Loop over all algebraic equations
o Variables (NLE)
Loop over all unknown variables
o InputPorts (NLE)
Loop over all input ports, contains a (loop) sub block to access the port variables
o OutputPorts (NLE)

Loop over all output ports, contains a (loop) sub block to access the port
variables

o EquationsODE (ODE, DAE)
Loop over all differential equations

o StateVariablesExplicit (ODE, DAE)
Loop over all explicit states

o StateVariablesimplicit (DAE)
Loop over all implicit states

Input Specification:
e Editor

In this editor you can specify the content of the selected block or see a description of the
meaning of the selected system/code property (e.g. “VarsDimension”)

e Show Invisible Characters
Check this option to display the invisible characters (whitespaces, tabs and newlines)
e (CtrStart
In this field you can enter the start value of the counter in loop blocks
Handles:

e Handle

The handle is the unique name of the selected code block. It can be changed and usually
starts and ends with an underscore (“_")

e Available Subhandles

This list shows all subhandles that are available for the selected code block. The list
contains global handles like “_DIM_VARS_”, specific local handles like “_ SEP_SYMBOL_",
and the handles of existing (maybe userdefined) subblocks, e.g. “_MySubBlock_".

Code Generation Preview:
e Text Field

This text field displays the generated code for a selected code block if code has been
generated

e Show Code

Press this button to generate code according to the selected code block, based on the
evaluation that has been loaded in the “Overall Results” panel

Example

IE MOSAIC 2015-09-2

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements [Unit Expart | IcasMoT | Dacumentation | Extras|

| Notationl Equationl Functionl Parameter L\stlTransformation | Connector | Equation System |Interface| Language Specification |V’ar5pec V\ewer‘

Location 53432: Isp_matlab_nle_with_CapeOpen_and_functions.moslsp [Open | [Search | [New] [Sove | [Saveds|

| Glabal Language Settings | Operations | Variable Namings | Extemal Functions | Code Generation Properties| Code Elements | Overall Resuits | Description | Keywards|

Elements Tree Input Specification Handles
[VaTsUTTIENSIon A
o Help Descripticn Top_q Handle

-] CapeOpenFraction
[EquasDimension _FULL_PROBLEM_SOLVING_CODE_

D CapeOpenTemperature
D CapeOpenEnthalpy
-] CapeOpenTotalFlow
-] CapeOpenCompFlow
_Help_Description_Top_[Bloc
. _Namespaceloop_[Name|
_Direct_Function_Implementa

Init_and_Solver Call_Function
Available Subhandles

Equatien System 9 CO_PROP_COMP_FLOW.
CO_PROP_ENTHALPY_
CO_PROP_FRACTION_
CO_PROP_PRESSURE_
CO_PROP_TEMPERATURE_
CO_PROP_TOTAL_FLOW_
ConfigureCOPProp_
DIM_EQUAS_
DIM_PARS_
DIM_VARS_
Direct_Function_Calls_
- ‘ Direct_Function_Implementations =
Equations[EquationsAF] Show Invisible Characters CtrStart < T | »
. _Variables_Apply_[Variable
. _Parameters_Apply_[Parar| Code Generation Preview
_Direct Function Calls [Direcl Selected File: No Evaluation loaded. Check the Overall Results Tab! Show Code
[_pirect_Functions_Section_[B
_Display_Results_[Block] Selected Block:
D _ConfigureCOPProp_[Block]
-] _DispCOCenfig [Block]
-] TestConfig_[Block]
|

Create Node

Delete Nede

Direct_Functicns_Secticn T
Display Results 9

_Init_and_Schver_Call_Functio|

[_COinit_[Block]
. _Variables_Init_[Variables]
| _Parameters_Set_[Paramet =
|1 _Equation_System_[Block]

ConfigureCOFFrop 1

RN TR 1)

DispCotonig_d

_TestConfig 9

Minimum Specifications Complete ™

Overall Results

Screenshot
IE MOSAIC 2015-09-2;

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Expeit | IcasMeT | Documentation | Extras

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location [open | [search | [New | | seve | [saveas|

|Global Language Settings | Operations | Variable Nammgsl External Functions | Cede Generation Propertlasl Code Elemantsl Overall Results |Des.:npt|on I Kaywordsl

Eualation

Status Information

X Degree of freedom: -1
X User defined language specificator is not set

X No code rated.
Information missing. EQ System Type:

Code

Generate Full Code

Minimum Specifications Incomplete ™

Options
General Remarks:

In the “Overall Results” panel you load an evaluation to test the code generation of your language
specification. You need to load an evaluation in this panel to activate the “Generate Full Code”
button and to be able to generate code for the different code blocks in the “Code Elements” panel.

Load File:
e Evaluation

Like in other editors of MOSAIC you can use Unload, Reload, Search and Select to set (or
unset) a model element. In this case an evaluation can be loaded to test the code generation
with your language specification.

Status Information:
e Text Field

This text field displays status information about the evaluation. It is the same as in the
“Evaluate” panel of the “Evaluate/Simulation” section of MOSAIC

Code:
e Text Field
This text field displays the generated code if code has been generated
e Generate Full Code

Press this button to generate code according to your user-defined language specification and
based on the evaluation that has been loaded before

Example
IE MOSAIC 2015-09-2;

Editors/Model | Evaluate/Simulation | Optimization | Analysis | Measurements | Unit Expeit | IcasMeT | Documentation | Extras

| Wotation | Equation | Function | Parameter List | Transformation | Connector | Equation System [Interface | Language Specification | VarSpec Viewer|

Location 53432: Isp_matlab_nle_with_CapeOpen_and_functions.moslsp [open | [search | [New | | seve | [saveas|

|Global Language Settings | Operations | Variable Nammgsl External Functions | Cede Generation Propertlasl Code Elemantsl Overall Results |Des.:npt|on I Kaywordsl

Evaluation 705: EvaluationExample 2.moseva

Status Information

v Degree of freedom: 0
" Code ready for use. [2015-09-21 15:25:26]

4 Local Execution: Please copy the code and use it in vour local environment.

Ready for evaluation. EQ System Type: NLE

Code

%

%

9% Matlab standard output for non-linear equation systems
%

% Copy this code into an m-file and execute it within Matlab
%

% The entry point is
% functien[ROOTS]=sclveEquationSystem()

%
% Code generated by the help of MOSAIC
%

%

%

% The namespaces have been normalized. The following
% table shows the attribuation.

...Senerate Full Cod

Minimum Specifications Complete

Description

This “Description” panel is the same as in all the other MOSAIC editors. You should use it to give a
detailed explanation on how to use your user-defined language specification. The description will be
displayed in the code generation panel of the Evaluate/Simulation section of MOSAIC. Of course you
can also add additional documentation files to this Language Specification by using the file upload
and attachment possibilities.

Keywords

This “Keyword” panel is the same as in all the other MOSAIC editors. You can add keywords to this
Language specification to attach some meta-information. Possible appropriate keywords may
describe the type of models this language specification can be applied (algebraic/NLE, or ODE, or
DAE) or the programming language family (Fortran, C/C++, Matlab, ...). This information can later on
be used to filter the language specifications when it comes to opening in this editor or loading in
other editors.

Tips, Tricks &Workflow Suggestions

Documentation

A language specification, without good instructions how to use it, is worthless for people who
haven’t designed it themselves. So you should for example explicitly mention which type of equation
systems (AE/NLE, ODE, DAE) you support with your language specification by writing it down in the
description and by using keywords.

Re-Use

If most of the work already has been done — don’t do it again. So re-use what has been done before
by opening a specification and saving it as another language specification to be modified in the next
step. It makes sense to copy language specifications supporting the same type of equation systems
you want to support or by selecting a language specification that will create code for the same
programming language you are targeting.

Have a code structure in mind (and on paper) before starting

Don’t start building the code structure just “from brain to screen”, use a structure you have written
down on paper. The code blocks you create always have a tree structure with the “FullCode” block
being the root. It is up to you how fine-grained you separate the different parts of your code tree, i.e.
how many levels your tree has. | nevertheless propose to design smaller, hierarchically ordered
blocks in contrast to a few very big code blocks in one level. This will later on not only help you when
it comes to systematically improving and extending the code structure (meaningful names of the
code blocks help a lot!). Smaller blocks also help when it comes to debugging, because the code
preview functionality allows you to check each block separately.

Typical Workflow

Before creating a new LSUD:
1. Choose the targeted programming language, e.g. python
2. Choose the type of equation system you want to support, e.g. NLE/AE
3. Look for an already existing LSUD for the same programming language and the same type of
equation system. If you are successful: Load this LSUD (A) and save it as another LSUD (B).
This way you have write access (B) and you do not change the existing LSUD (A) by accident
(in case you have write access to A, too).

Creating the new LSUD:

1.

Lo N R WN

If possible: Open the “prepared” LSUD (B)

Check or set the System Type (DAE, ODE, NLE)

Check or redefine the operators

Check or redefine the Variable Naming settings (Affixes, Separators)
Enter a description in the Description Tab

Select keywords in the Keywords Tab

Build the code block tree in the “Code Elements” Panel

Don’t forget to click on “Save” when you made progress

Add support for External Functions if necessary

10. Set the name and extension for the export file

11. Define properties and their options for code generation

Testing and Using the LSUD:

1.

Load an evaluation in the “Overall Results” panel, click on “Generate Full Code”, and check
the result.

In the “Code Elements” panel: Select a code block and click on “Show Code” (needs a loaded
evaluation, see “Overall Results” panel)

In the “Evaluate/Simulation” section, when it comes to code generation (“Evaluation” tab),
activate “User-defined Language Specification”, and click on “Select” or “Search” to choose
your own language specification for code generation.

